
www.manaraa.com

Interhost dispersal alters microbiome assembly
and can overwhelm host innate immunity in
an experimental zebrafish model
Adam R. Burnsa,1, Elizabeth Millera, Meghna Agarwalb, Annah S. Roligb, Kathryn Milligan-Myhrec, Steve Seredickd,
Karen Guilleminb,e, and Brendan J. M. Bohannana

aInstitute of Ecology and Evolution, University of Oregon, Eugene, OR 97403; bInstitute of Molecular Biology, University of Oregon, Eugene, OR 97403;
cBiological Sciences, University of Alaska Anchorage, Anchorage, AK 99508; dInstitute of Neuroscience, University of Oregon, Eugene, OR 97403;
and eHumans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada

Edited by Jeffrey I. Gordon, Washington University School of Medicine in St. Louis, St. Louis, MO, and approved September 7, 2017 (received for review
February 15, 2017)

The diverse collections of microorganisms associated with humans
and other animals, collectively referred to as their “microbiome,”
are critical for host health, but the mechanisms that govern their
assembly are poorly understood. This has made it difficult to iden-
tify consistent host factors that explain variation in microbiomes
across hosts, despite large-scale sampling efforts. While ecological
theory predicts that the movement, or dispersal, of individuals can
have profound and predictable consequences on community as-
sembly, its role in the assembly of animal-associated microbiomes
remains underexplored. Here, we show that dispersal of microor-
ganisms among hosts can contribute substantially to microbiome
variation, and is able to overwhelm the effects of individual host
factors, in an experimental test of ecological theory. We manipu-
lated dispersal among wild-type and immune-deficient myd88
knockout zebrafish and observed that interhost dispersal had a
large effect on the diversity and composition of intestinal micro-
biomes. Interhost dispersal was strong enough to overwhelm the
effects of host factors, largely eliminating differences between
wild-type and immune-deficient hosts, regardless of whether dis-
persal occurred within or between genotypes, suggesting dis-
persal can independently alter the ecology of microbiomes. Our
observations are consistent with a predictive model that assumes
metacommunity dynamics and are likely mediated by dispersal-
related microbial traits. These results illustrate the importance of
microbial dispersal to animal microbiomes and motivate its inte-
gration into the study of host–microbe systems.
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The communities of microorganisms associated with animals,
referred to as the “microbiome,” are highly diverse and have

the potential to strongly influence host health. Understanding how
microbiomes contribute to host physiology, and how to manipu-
late this relationship to promote host health, requires a compre-
hensive understanding of the mechanistic drivers of microbiome
variation across hosts. Unfortunately, it has been difficult to
identify consistent host factors that can explain the large amounts
of the variation in microbiome composition across individual
hosts, despite large-scale sampling efforts (1). At best, only a small
fraction of variation across hosts can be explained by individual
host factors, leading to the perception that the rules governing
microbiome assembly are idiosyncratic. However, unlike many
other attributes of an animal’s biology that impact its health and
fitness, an animal’s microbiome is subject to dispersal of micro-
organisms from other hosts. If the influence of microbial dispersal
among hosts is substantial, then a comprehensive model of
microbiome dynamics must include consideration of not just the
factors associated with individual hosts but also the population of
hosts with which they exchange microbiome members.
Dispersal is increasingly recognized as an important de-

terminant of the structure and function of both experimentally

assembled (2, 3) and naturally occurring bacterial communities
(4, 5), and there is mounting evidence that dispersal is also im-
portant to the assembly of nonpathogenic, animal microbiomes.
Biogeographic patterns have been observed for microbiomes
associated with natural populations of animals (6–8), consistent
with predicted effects of dispersal. Social interactions among
hosts, a possible facilitator of microbial dispersal, have been
shown to correlate with the composition of animal microbiomes,
with hosts tending to share more members of their microbiome
with the microbiomes of individuals with whom they interact
frequently (9–11). Dispersal has also been hypothesized to ex-
plain differences in the microbiomes of humans in economically
developed and developing regions (12). Studies of laboratory
animals often report that the microbiomes of animals housed
together are more similar than those in different housing units.
These so called “cage effects” routinely explain significant amounts
of microbiome variation, as well as variation in phenotypes known
or suspected to be mediated by the microbiome (13–15). In-
terestingly, experiments studying the innate immune system have
often shown that cohousing of healthy and immune-deficient ani-
mals can transfer phenotypes associated with immune pathway
mutants, including increased inflammation and colitis (16, 17).

Significance

Manipulating the microbial communities associated with ani-
mals to improve host health requires a comprehensive un-
derstanding of the mechanisms driving microbiome variation,
which a strict focus on host-specific factors has been in-
sufficient in providing. We performed an experiment to test
whether the movement, or dispersal, of microorganisms among
zebrafish hosts could alter the effects of important host factors,
using a dispersal-based model to guide the interpretation of
results. We observed that interhost dispersal can alter the di-
versity and composition of microbial communities and over-
whelm the effects of the host’s innate immune system. These
findings suggest that dispersal is an important mechanism
driving microbiome variation and should be considered in fu-
ture microbiome research.
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Similar investigations of the link between innate immunity and
microbiomes have led to conflicting or inconclusive results, with
some finding little to no effect of innate immune pathways on
microbiome composition or diversity, especially in cases where
both wild-type (WT) and immune-deficient animals were housed
together or from the same litter (18–20). These examples are
particularly interesting given the role the immune system plays in
direct interactions between animals and their resident microor-
ganisms, suggesting dispersal of nonpathogenic microorganisms
may have important consequences to animal hosts.
Research on host-associated microbiomes has increasingly uti-

lized frameworks from general ecological theory to guide experi-
ments and interpret patterns such as those described above.
Metacommunity theory in particular focuses on dispersal among
multiple discrete “local” communities (21) and is thus potentially
well suited to describing host–microbe systems, where hosts act as
environments that are home to local communities of microor-
ganisms linked by interhost dispersal (22, 23). Dispersal, as well as
metacommunity theory specifically, has been invoked to explain
many patterns in microbiome diversity and composition (e.g., ref.
12). While the results of these studies are often consistent with the
predicted effects of dispersal, these studies are not designed to
directly test the importance of interhost dispersal on the assembly
of host-associated microbiomes and often struggle to disentangle
the effects of dispersal from other confounding factors. Further-
more, they provide limited insight into the mechanisms by which
dispersal processes result in such patterns.
Here, we describe an experiment, guided by a quantitative pre-

dictive framework, that explicitly manipulates interhost dispersal to
test its role in microbiome assembly and gain insights into the un-
derlying mechanistic processes. Specifically, we tested whether
dispersal of microorganisms among hosts can influence or over-
whelm the effects of individual host factors, namely the innate
immune system, on the composition and diversity of zebrafish
(Danio rerio) intestinal microbiomes. The relatively simple hus-
bandry and large clutch sizes of zebrafish allowed us to manipulate
the transmission of microorganisms among a large number of
replicate individuals through cohousing and isolation at a scale not
feasible in humans or other vertebrate models, while their genetic
malleability made it possible to focus on the effects of host innate
immunity through the generation of immune-deficient mutants.
To generate specific predictions and to guide the interpretation of
our results, we created a computational model assuming meta-
community dynamics across hosts. We observed that the effects of
dispersal among zebrafish on microbiome composition and diversity
are largely consistent with our model and can overwhelm the effects
of host innate-immune activity.

Results
We generated an immune-deficient myd88− mutant zebrafish
line and raised homozygous mutant with WT zebrafish under
three housing conditions designed to either allow or restrict
dispersal among hosts: “solitary” conditions in which each indi-
vidual zebrafish was in isolation with no exposure to other in-
dividuals (i.e., no interhost dispersal), or cohoused, either with
members of the same genotype only (“separated”) or with
members of both genotypes (“mixed”; Fig. 1). The myeloid dif-
ferentiation primary response gene 88 (MyD88) encodes a uni-
versal adapter protein in the Toll-like receptor (TLR) pathway
and is responsible for activating several immune responses in
response to signaling from the microbiota, including the pro-
duction of proinflammatory cytokines and antimicrobial peptides
and the detoxification of the bacterial product lipopolysaccha-
ride (24–26). The germline mutation in MyD88 was generated
using CRISPR/Cas9, and the resulting myd88− mutant was
confirmed to have the expected phenotype of low neutrophil
abundance in the intestines of conventionally reared larvae, with
abundances similar to those of WT larvae raised germ-free, as

previously described for zebrafish injected with a MyD88 mor-
pholino (24) (Generation and Verification of a myd88 Mutant
Zebrafish and Fig. S1). To isolate the effects of innate vs.
adaptive immunity, we raised fish to 21 d postfertilization (dpf),
as adaptive immunity does not become active in zebrafish until
∼28 dpf (27). At 21 dpf, we killed the fish and characterized the
microbial communities associated with their intestines and those
associated with their food and flask water by 16S amplicon se-
quencing. As one might expect given the importance of host
immunity to defense against pathogens, myd88− fish had higher
mortality rates and, notably, their mortality rates were higher in
the cohoused treatments compared with the solitarily treatment
(Fig. S2). Interestingly, mortality rates for WT fish were also
higher when cohoused, especially when cohoused with myd88−

fish. Because of this, by the end of the experiment, the number of
fish in each flask were no longer equal. However, we did not
observe a significant effect of the ultimate number of fish per
flask on microbiome composition within treatments [permuta-
tional multivariate ANOVA (PerMANOVA): P > 0.05].
To determine whether the observed effects of housing treat-

ments on microbiome diversity and composition were consistent
with interhost dispersal being the primary driving mechanism, we
compared our experimental results with predictions from a
computational model assuming metacommunity dynamics (Ta-
ble 1). In this model, individual hosts are home to local com-
munities of microorganisms that are connected by dispersal to
form a metacommunity comprised of all of the hosts within a
population/flask (Fig. S3). Additional details regarding model
construction and generation of predictions is available in Com-
putational Metacommunity Model.

Interhost Dispersal Overwhelms Host Factors. Overall, there was a
significant difference in the composition of microbiomes asso-
ciated with WT and myd88− zebrafish, but the effect of host
genotype was weaker than the effect of housing treatment across
the entire dataset (Fig. 2A and Table 2). We predicted that the
effect of host factors such as innate immunity would depend on
the degree of interhost dispersal, due to the homogenizing ef-
fects of exchanging microbial taxa among host types (Table 1). In
agreement with our predictions, we observed a strong interaction
between housing and genotype. Specifically, there was a much
greater difference in microbiome composition between geno-
types when hosts were raised in solitary compared with cohoused
treatments, either within or across genotypes (Table 2).

WT myd88-

Solitary

No inter-host
dispersal

Cohoused

Separated

Inter-host dispersal
only within genotype

Mixed

Inter-host dispersal
between genotypes

1 zebrafish / flask 10 zebrafish / flask 5 WT + 5 myd88- / flask

Fig. 1. Experimental design. WT and myd88− zebrafish were raised in one
of three housing conditions to manipulate the degree of interhost dispersal:
housed alone with no interhost dispersal (solitary), cohoused with only in-
dividuals of the same genotype (separated), or cohoused with individuals of
both genotypes (mixed).
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To further investigate whether the effects of host factors were
being weakened by dispersal at a finer, individual host level, we
measured the relationship between attributes of each host and
the composition of their microbiome within each housing treat-
ment. We hypothesized that dispersal among heterogeneous
hosts would dilute the effects of local host factors, and therefore
the relationship would be strongest for solitary hosts and weakest
for separated and mixed cohoused hosts. We first measured the
standard length of each zebrafish (Fig. S4A), which is known to
be an overall indicator of fish development and health (28), and
which we had previously shown was a strong predictor of in-
testinal microbiomes across zebrafish development (29). We also
characterized the level of innate immune activity of each host by
measuring the transcriptional levels of two immune genes: one,
c3, in the MyD88-independent complement pathway, and an-
other, il-1β, in the MyD88-dependent pathway. As expected
given their genotype, we found expression of il-1β to be lower in
myd88− compared with WT hosts, while expression of c3 was
similar between the two genotypes (ANOVA on effects of ge-
notype: F statistic = 13.9, P < 0.001 for il-1β and F statistic =
0.11, P = 0.74 for c3; Fig. S4 B and C). Despite having a strong
effect on the microbiome diversity and composition, housing
conditions had no clear effect on host innate immune response
(ANOVA on effects of housing: P > 0.05 for both il-1β and c3).
This reaffirmed our assumption that interhost dispersal primarily
altered the degree of filtering of the microbiome by the local host
environment rather than changing the host environment itself.
To test this, we performed a redundancy analysis to determine
the unique and shared contribution of each host factor to
explaining the variance in community composition. Consistent
with our hypothesis, a greater amount of variance in microbiome
composition was explained by host factors in solitary than in
separated or mixed hosts (Fig. 2B).

Interhost Dispersal Increases Diversity. The strong independent ef-
fect of housing treatment on microbiome composition suggests
dispersal fundamentally alters the structure of host-associated
microbiomes. Our model predictions of the effects of dispersal on
diversity were qualitatively in agreement with the predictions of
general ecological theory (30, 31): dispersal among hosts increases
α-diversity (i.e., within-host diversity) through the maintenance of
taxa in hosts where they would otherwise go extinct, decreases
β-diversity (i.e., variation among hosts) through the homogenizing
effects of sharing individuals, and increases γ-diversity (i.e., across-
host diversity) by allowing dispersal-specialized taxa to evade
competitive exclusion at the metacommunity scale (Table 1).
Our experimental results were largely consistent with these theo-

retical predictions. Both within-host α-diversity (Fig. 3A; ANOVA on
effects of housing: F statistic = 36.6, P < 0.001) was lower in the
solitary treatment, relative to mixed and separated, with the mixed
and separated treatments indistinguishable statistically. Variation
among hosts, or β-diversity, was significantly greater in solitary hosts
than mixed hosts, with separated hosts overall more similar to soli-
tary than mixed hosts (Fig. 3B; ANOVA on effects of housing: F
statistic = 26.5, P < 0.001). Across-host γ-diversity (Fig. 3C) was
lower in the solitary treatment, relative to mixed and separated.
While housing treatment had a large impact on microbiome diversity
at multiple scales, there was no detectable difference between gen-
otypes, with the exception of β-diversity within separated hosts (Fig.
3; ANOVA: P > 0.05). The most notable deviation from our pre-
dicted effects of dispersal on diversity was the effect of the separated
housing treatment, which we anticipated would show a response
intermediate to the solitary and mixed treatments. In contrast, we
observed no difference in α- and γ-diversity between the separated
and mixed cohousing treatments. The simplest explanation for this
discrepancy is that innate immunity has a smaller effect on diversity
than expected relative to the independent effects of dispersal.

Table 1. Predictions from a metacommunity model of the effects of interhost
dispersal treatments on the diversity and composition of host-associated microbiomes

Microbiome structure Solitary Separated Mixed

Correlation with host environment Strong Strong between/weak
within genotypes

Weak

α-Diversity (within host) Low Intermediate High
β-Diversity (interhost) High Intermediate Low
γ-Diversity (across host) Low Intermediate High
Abundance of dispersal specialist Low High High
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Fig. 2. Relationship between host factors and microbiome composition. (A) A nonmetric multidimensional scaling ordination of Canberra distances among
individual microbiomes. Ellipses represent 95% CIs around the group centroid. (B) Variance in microbiome composition explained by individual host factors
following a redundancy analysis. Shown are the adjusted R2 values for the unique and shared contribution of multiple host factors: il-1β expression (IL1B), c3
expression (C3), and standard length (SL). Negative adjusted R2 values are treated and displayed as zeroes (considered as null).
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Interhost Dispersal Promotes Dispersal-Related Traits. We unex-
pectedly observed that cohousing had a similar effect on micro-
biome composition and diversity regardless of whether hosts
were cohoused with only members of the same genotype (sepa-
rated) or with members of both genotypes (mixed; Fig. 2A;
PerMANOVA: P > 0.05 for both WT and myd88− comparisons).
If dispersal acted only to homogenize microbiomes through the
simple exchange of microorganisms among hosts, then we would
expect that the two genotypes would maintain their distinctive-
ness in the separated treatment (since dispersal between geno-
types is not possible). This suggested that dispersal among hosts
altered the nature of selection for microbiome members, po-
tentially by increasing the success of dispersal-adapted micro-
organisms. In further support of this hypothesis, both separated
and mixed microbiomes were overall more diverse than solitary
microbiomes (Fig. 3A) and were not limited to being a simple
mix of taxa from solitary microbiomes. While the majority of taxa
that occurred in solitary microbiomes were also detected in their
cohoused counterparts (86% and 88% for solitary WT and
myd88− hosts, respectively), a much smaller proportion of taxa
that occurred in cohoused microbiomes were also detected in their
solitary counterparts (59% and 64% for cohoused WT andmyd88−

hosts, respectively). Our computational model also predicted a
similar increase in diversity in cohoused hosts. In particular, the
model predicted that interhost dispersal would favor the persis-
tence of species with greater dispersal rates (Fig. S5A), especially
when a trade-off was imposed between dispersal rates and host
specificity, such that species with high dispersal rates would be
found in a wider range of host types, thereby homogenizing com-
munities (Fig. S5B). This suggests that interhost dispersal allows

for the success of taxa in the metacommunity as a whole that would
not otherwise persist.
If it is indeed the case that trade-offs in the life history strategies

of microbial taxa underlie the effects of dispersal in this system,
then we should see this reflected in the traits of microbial taxa
associated with cohoused and solitary microbiomes. To test this
prediction, we asked whether taxa associated with cohoused
microbiomes were enriched for traits related to dispersal and col-
onization ability compared with taxa associated with solitary
microbiomes. The taxa most differentially abundant in cohoused
compared with solitary microbiomes primarily belonged to the
genera Vibrio (log2-fold change = 1.1, P < 0.0001) and Shewanella
(log2-fold change = 0.62, P < 0.01). To infer the traits of individual
operational taxonomic units (OTUs) in our study, we used the
ancestral state reconstructions implemented in PICRUSt to esti-
mate the gene content of our observed OTUs by matching them to
a reference database (32). We then asked which gene pathways
were predicted to be enriched in those taxa that were differentially
abundant in cohoused microbiomes compared with those associ-
ated with solitary microbiomes. Notably, the most strongly enriched
pathways in cohoused associated taxa included ones related to
bacterial motility (such as flagellar assembly and bacterial chemo-
taxis), quorum sensing (which is often used to regulate biofilm
formation and virulence), two-component regulatory systems (which
facilitate responses to changes in the environment), and Vibrio
pathogenicity (Table 3). Although these traits are merely predictions
based on similarity to a known reference database rather than direct
measurements, they independently support our modeling predic-
tions that dispersal among hosts selects for taxa with life history
strategies favoring dispersal and repeated colonization of multiple
host types. In the case of the Vibrio pathogenicity-related path-
ways, they may also explain the observed decreased survivorship of
cohoused zebrafish of both genotypes (Fig. S2).

Discussion
Dispersal among hosts had a substantial impact on the diversity
and composition of zebrafish gut microbiomes in our study and
was sufficient to overwhelm the effects of host-specific factors
such as innate immune activity. Notably, the strong effects of
dispersal in the experiment were specifically the result of
“interhost” dispersal, as the overall migration of microorganisms
from all other sources, such as from the microbial communities
found in the flask water or food, was not directly altered. Fur-
thermore, we only manipulated the potential for dispersal to occur
by exposing hosts to one another, while the actual movement of
microorganisms among hosts occurred naturally without direct

Table 2. PerMANOVA analysis on the effects of genotype and
housing on microbiome composition

Factor MS F R2 P*

Across-housing treatments
Genotype 0.007 7.2 0.05 <0.001
Housing 0.009 9.6 0.14 <0.001
Genotype × Housing 0.008 8.6 0.13 <0.001

Within-housing treatments
Genotype–solitary 0.067 34.1 0.58 <0.001
Genotype–separated 0.014 3.4 0.15 0.010
Genotype–mixed 0.004 2.8 0.05 0.001

*P values calculated from a distribution of 1,000 random permutations.
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Fig. 3. Effects of host genotype and housing conditions on the composition and diversity of intestinal microbiomes. (A) Within-host α-diversity, measured by
the Shannon diversity index. (B) Interhost β-diversity, measured by the Canberra distance from the group centroid (β-dispersion). (C) Across-host γ-diversity,
measured by comparing the average gain in total OTU richness with increased sampling within each metacommunity treatment.
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manipulation (such as by gavage, injection, forced feeding, etc.). As
a consequence, we do not know the actual rates of dispersal that
occurred in this experiment nor how they compare with those found
in natural populations of fish or other animals. It is probable that
both the strength and nature of the effects of interhost dispersal
differ with different rates of dispersal, and deeper investigations of
this relationship will help reveal the specific circumstances under
which we expect interhost dispersal to be more or less important. It
is worth noting, however, that given that the rates of dispersal in this
experiment were allowed to occur passively, they are unlikely to be
overly unrealistic, and it is therefore reasonable to expect similar
effects in many natural systems.
In addition to demonstrating the overall effects of dispersal on

microbiome composition and diversity, this experiment has gen-
erated unexpected insight into the specific mechanisms by which
interhost dispersal influences microbiomes. Contrary to our initial
predictions, we observed a homogenization of host microbiomes
regardless of whether dispersal was limited to within host geno-
types (separated) or allowed to occur between host genotypes
(mixed). This homogenization likely occurs because the existence
of dispersal among hosts alters the viable trait space for host-
associated microorganisms and selects for life history strategies
favoring motility and transmission. This interpretation is sup-
ported by our genomic predictions that dispersal-related genetic
pathways were enriched in the microbiomes of cohoused com-
pared with solitary hosts, and by the ability to reproduce our re-
sults in our computational model by imposing a trade-off between
dispersal ability and host type specificity. Similar phenomena are
predicted in metacommunity models incorporating colonization–
competition trade-offs (33) and have been investigated in com-
munities of pathogens (34). This behavior in commensal micro-
biomes suggests that the consequences of interhost dispersal are
likely more complex than simply the homogenization of micro-
biomes through the sharing of microbial taxa.
Combining experimental studies such as this with surveys of

natural systems will undoubtedly help inform both how generaliz-
able experimental results are as well as strengthen inferences about
the importance of dispersal based on observed patterns. The im-
portance of dispersal in natural populations of hosts has often been
inferred by observed increases in within-host α-diversity and de-
creases in interhost β-diversity (e.g., ref. 12), or by correlations
between microbiome similarity and proxy measurements for dis-
persal, such as frequency of social interactions (e.g., ref. 10) or
geographic distance (e.g., ref. 8). These inferences are frequently
based on general predictions from conceptual models of commu-
nity assembly or even simple intuition. By experimentally testing
predictions from a mechanistic model, our study creates a stronger
link between such patterns and interhost dispersal as the driving
mechanism, justifying such inferences. It also provides further evi-
dence that theories and models developed in other ecosystems may

be applied to better understand the assembly and dynamics of host–
microbe systems. In particular, we have demonstrated that meta-
community theory provides an appropriate framework for the study
of host-associated microbial communities, as has previously been
suggested (22, 23). Utilizing and combining these tools will help
provide better understanding of how individual microbiomes are
influenced by processes occurring at the scale of populations and
communities of multiple hosts. Such a holistic understanding will
improve our ability to both manipulate microbiomes and predict
their responses to changes in host behavior and ecology.

Methods
Zebrafish Husbandry.All zebrafish experimentswere performedusingprotocols
approved by the University of Oregon Institutional Care and Use Committee
and followed standard protocols. We generated an immunocompromised
myd88 zebrafish mutant using the CRISPR-Cas9 system (35) (Generation and
Verification of a myd88 Mutant Zebrafish). WT AB/Tübingen fish with a fully
functional immune system and isogenic mutant myd88− zebrafish were then
raised in glass Erlenmeyer flasks, such that microorganisms could disperse
among hosts in the same flasks, but not between hosts in different flasks.
Because there was no practical or noninvasive method to reliably distinguish
myd88− from WT zebrafish embryos, the embryos for each genotype were
generated from two crosses of homozygous parents. To eliminate potential
maternity effects, standard gnotobiotic zebrafish protocols were used to make
the embryos “germ-free” (free of microorganisms) before being exposed to a
shared inoculum at the beginning of the experiment.

Beginning as germ-free embryos, zebrafish were raised in flasks alone
(solitary), or cohoused with 10 total zebrafish of the same genotype (sepa-
rated), or 5 of each genotype (mixed), per flask (Fig. 1). Initially, 20 fish of each
genotype were raised alone in solitary flasks, 40 fish of each genotypes were
raised across four replicate separated flasks, and 20 fish of each genotype
were raised across four replicate mixed flasks, resulting in a total of
160 zebrafish at the beginning of the study. The volume of embryo media and
size of flask was scaled to the number of fish, that is, 50 mL of embryo media
in a 125-mL Erlenmeyer flask for solitary conditions and 500 mL of embryo
media in a 1-L Erlenmeyer flask for cohoused conditions. Doing so allowed the
density of fish to be equivalent across housing conditions. Every day, ∼75–
90% of the embryo media in each flask was removed and replaced with fresh,
but not sterilized, embryo media. During this time, the majority of food debris
and zebrafish feces, as well as any dead fish carcasses, were removed as well.
Once the zebrafish fully hatched from their chorions (by 4 dpf), fish were fed
live rotifers to a concentration of 20 individuals per mL, followed by the ad-
dition of live brine shrimp beginning at 10 dpf once per day.

Sampling and DNA/RNA Extractions.At 21 dpf, the juvenile zebrafishwere killed
and dissected to sample their intestinal microbiomes by 16S rRNA gene se-
quencing, as well as to characterize their innate immune response by qPCR of
two genes encoding innate immune cytokines: il-1β and c3. Each individual
intestine was aseptically removed and placed in a sterile 2-mL screw cap tube
with 200 mL of nuclease-free water while the remainder of the zebrafish car-
cass was placed in a 2-mL screw cap tube with 1 mL of TRIzol (Life Technolo-
gies). Both sample types were then immediately frozen in liquid nitrogen and
stored at −80 °C until DNA/RNA extractions were performed. To identify the
genotype of mixed cohoused zebrafish, mixed cohoused samples were geno-
typed by PCR of the MyD88 gene using forward primer, 5′-GTAACGCGGAGA-
TATACAACAAC-3′, and reverse primer, 5′-GAAGCGAACAAAGAAAAGCAA-3′.

DNA was extracted from intestinal samples using the MoBio Power-
Microbiome RNA Isolation kit (product number 26000-50) with the addition
of β-mercaptoethanol (product number M3148-25ML; Sigma) using the
manufacturer’s suggestions. RNA was extracted from the remaining zebra-
fish carcasses using a standard laboratory TRIzol extraction protocol (29).

cDNA Conversion and qPCR of Host Innate Immune Genes. Extracted zebrafish
RNAwas converted into cDNA using the SuperScript IV reverse transcriptase kit
(Invitrogen) following the manufacturer’s instructions. qPCR assays were
performed in 20-μL reactions with 20 ng of cDNA, and 400 nM gene-specific
or control primers. Gene-specific primers were ordered from Eurofins Geno-
mics with the following sequences: IL-1B forward primer, 5′-CATCAAACCC-
CAATCCACAG-3′, and reverse primer, 5′-CACCACGTTCACTTCACGCT-3′;
C3 forward primer, 5′-CGGACGCTGACATCTACCAA-3′, and reverse primer,
5′-TCCAGGTCTGCTCTCCCAAG-3′. Primers for the housekeeping genes SDHA
and ElF-1B (used to normalize the results) were ordered from PrimerDesign.
All reactions were performed in triplicate using a Bio-Rad CFX96 Real-
Time PCR (qPCR) Thermocycler. Starting concentrations of transcripts

Table 3. The top KEGG orthology pathways predicted to
be enriched in taxa that are differentially abundant in
cohoused microbiomes

KEGG orthology pathway χ2 statistic Adjusted P value

Vibrio cholerae pathogenic cycle 263 1.29 × 10−56

Bacterial chemotaxis 131 7.27 × 10−28

Quorum sensing 130 1.06 × 10−27

Two-component system 130 1.14 × 10−27

Phosphotransferase system (PTS) 100 4.93 × 10−21

Flagellar assembly 79 2.14 × 10−16

Vibrio cholerae infection 70 1.92 × 10−14

Aminobenzoate degradation 70 2.42 × 10−14

Phenylalanine metabolism 49 9.19 × 10−10

Benzoate degradation 47 2.32 × 10−9
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were estimated from the resulting amplification curves using the
LinRegPCR software (36). Technical replicates were then averaged and
divided by the geometric mean of housekeeping genes SDHA and ElF-1B
to normalize results.

16S rRNA Gene Sequencing and Processing. We characterized the microbiomes
of individual samples via sequencing of the V4 region of the 16S rRNA gene
using 515F and 806R primer sequences (37). We used a single-step PCR to add
dual indices and adapter sequences to the V4 region of the bacterial 16S rRNA
gene and generate paired-end 150-nt reads on the Illumina HiSeq 2500 plat-
form. The resulting 16S rRNA gene sequences were assembled using FLASH
(38) and quality filtered using the FASTX Toolkit (39). Zebrafish host se-
quences were filtered from the dataset by aligning reads to the zebrafish
genome using Bowtie2 (40). OTUs were defined de novo using 97% sequence
similarity in the USEARCH pipeline (41). The taxonomy of these OTUs was then
assigned using the RDP classifier (42). To infer the genomic content of OTUs,
we first matched representative sequences from each de novo OTU to 97%
similarity OTUs in the Greengenes 13_8 database (43). We then used the
preestimated genomic predictions for the Greengenes OTUs from PICRUSt to
infer the genomic content of the OTUs in our study (32). Illumina sequence
reads have been deposited under the National Center for Biotechnology In-
formation BioProject accession number PRJNA378677.

Community Analysis and Statistics. Before analysis, OTU abundance tables
were rarefied to 13,700 reads per sample. We measured differences in
microbiome composition using the Canberra distance. To assess whether

different treatments or host factors had a significant effect on microbiome
composition, we performed PerMANOVA with 1,000 random permutations
using these distances. To measure the overall variation in microbiome
composition within groups, we performed a multivariate homogeneity of
group dispersions test. Variance partitioning on microbiome composition by
host factors (standard length and il-1β and c3 gene expression) was done by
canonical redundancy analysis to measure both the unique and shared
contributions of each host factor (44). Identification of differentially abun-
dant taxa was done using a negative binomial distribution model imple-
mented in the DESeq2 package (45), while identification of predicted gene
pathways enriched in these taxa was done by Poisson regression followed by
a χ2 test of significance. Calculation of the Canberra distance, PerMANOVA,
Shannon diversity, multivariate dispersions test, and redundancy analysis
were all performed in R (46) using the vegan package (47).
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